Consideracollectionof10,000atomsofrubidium-87,confinedinsideaboxofvolume(10-5m)3.(a)Calculateε0,theenergyofthegroundstate.(Expressyouranswerinbothjoulesandelectron-volts.)(b) Calculate the condensation temperature, and comparekTctoϵ0. (c)SupposethatT=0.9Tc.Howmanyatomsareinthegroundstate?Howcloseisthechemicalpotentialtotheground-stateenergy?Howmanyatomsareineachofthe(threefold-degenerate)firstexcitedstates?(d)Repeatparts(b)and(c)forthecaseof106atoms,confinedtothesamevolume.Discusstheconditionsunderwhichthenumberofatomsinthegroundstatewillbemuchgreaterthanthenumberinthefirstexcitedstate.

Short Answer

Expert verified

bffdb

Step by step solution

01

fbfsbfbffb

fbdf

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each atom in a chunk of copper contributes one conduction electron. Look up the density and atomic mass of copper, and calculate the Fermi energy, the Fermi temperature, the degeneracy pressure, and the contribution of the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low to treat this system as a degenerate electron gas?

(a) As usual when solving a problem on a computer, it's best to start by putting everything in terms of dimensionless variables. So define t=T/Tcc=μ/kTc,andx=ϵ/kTc. Express the integral that defines μ, equation 7.122, in terms of these variables. You should obtain the equation

(b) According to Figure 7.33, the correct value of cwhen T=2Tcis approximately -0.8. Plug in these values and check that the equation above is approximately satisfied.

(c) Now vary μ, holding Tfixed, to find the precise value of μfor . Repeat for values of T/Tcranging from 1.2up to 3.0, in increments of 0.2. Plot a graph of μas a function of temperature.

In Section 6.5 I derived the useful relation F=-kTln(Z)between the Helmholtz free energy and the ordinary partition function. Use analogous argument to prove that ϕ=-kT×ln(Z^), where Z^ is the grand partition function and ϕis the grand free energy introduced in Problem 5.23.

For a system of particles at room temperature, how large must ϵ-μbe before the Fermi-Dirac, Bose-Einstein, and Boltzmann distributions agree within 1%? Is this condition ever violated for the gases in our atmosphere? Explain.

At the center of the sun, the temperature is approximately 107K and the concentration of electrons is approximately 1032 per cubic meter. Would it be (approximately) valid to treat these electrons as a "classical" ideal gas (using Boltzmann statistics), or as a degenerate Fermi gas (with T0 ), or neither?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free
OSZAR »