Use the thermodynamic identity to derive the heat capacity formula

CV=TSTV

which is occasionally more convenient than the more familiar expression in terms of U. Then derive a similar formula for CP, by first writing dHin terms of dSand dP.

Short Answer

Expert verified

The heat capacity expression is same for both at constant pressure and volume.

Step by step solution

01

Explanation of Solution

Given:

The thermodynamic identity for infinitesimal process is:

Internal energy, dU=TdS-PdV

Enthalpy,dH=dU+PdV

02

Calculation

At constant volume , the heat capacity is

CV=UTV

CV=TdS-PdVTV

CV=TSTV

At constant pressure the heat capacity is,

CP=HTP

CP=dU+PdVTP

CP=TSTP

The heat capacity expression is same for both at constant pressure and volume.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What partial-derivative relation can you derive from the thermodynamic identity by considering a process that takes place at constant entropy? Does the resulting equation agree with what you already knew? Explain.

In Problem 2.32you computed the entropy of an ideal monatomic gas that lives in a two-dimensional universe. Take partial derivatives with respect to U,A, and N to determine the temperature, pressure, and chemical potential of this gas. (In two dimensions, pressure is defined as force per unit length.) Simplify your results as much as possible, and explain whether they make sense.

In order to take a nice warm bath, you mix 50 liters of hot water at 55°C with 25 liters of cold water at 10°C. How much new entropy have you created by mixing the water?

Consider an ideal two-state electronic paramagnet such as DPPH, with μ=μB. In the experiment described above, the magnetic field strength was 2.06T and the minimum temperature was 2.2K. Calculate the energy, magnetization, and entropy of this system, expressing each quantity as a fraction of its maximum possible value. What would the experimenters have had to do to attain99% of the maximum possible magnetization?

Figure 3.3 shows graphs of entropy vs. energy for two objects, A and B. Both graphs are on the same scale. The energies of these two objects initially have the values indicated; the objects are then brought into thermal contact with each other. Explain what happens subsequently and why, without using the word "temperature."

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free
OSZAR »